
Oracle bitmap Indexes and their use in pattern matching.

Author : Dominic Giles

Date : 8 July 2005

Introduction

It is a common requirement to search for text on the web or in files or databases and many solutions
exist to solve this problem. Another similar requirement is to be able to search relational database
tables for pattern matches on relatively small strings i.e. emails, product descriptions.

Searches of this class are typically characterised by relatively low numbers of rows, usually in the
thousands and in exceptional circumstances millions. Whilst the number of rows being searched
against remains low and the search criteria are exact matches or right truncated wildcards (i.e.
“dominc%”) the solution used is typically memory resident scans or the use of various types of
standard indexes i.e. b-tree . The problem becomes harder to solve efficiently when the quantity of
rows that need to be searched increase to many millions or queries use use left or doubly truncated
wildcards (i.e. “%omini%”).

Simple Pattern Matches (right truncated wildcards)

Examples of simple searches (using Oracle syntax)

where product = 'super widescreen TV' Find all rows that exactly match their column
“product” with the text “super widescreen TV”

where description like '17inch%' Find all rows whose columns “description” starts
with “17inch”

The Oracle database provides a number of solutions to provide fast responses to queries of this class.

Full Tables Scans In some instances where the amount of data
being queried is small (i.e. can be cached in
memory) , this approach may provide a simple
efficient means of performing both simple and
complex searches.

Pros: Simple, No additional
resource required.

Cons : Performance will
quickly degrade as volumes
increase

B-tree Indexes Provides fast access for exact and simple pattern
matches. This approach scales well from small
to large data sets.

Pros: Simple and well
understood, scales well.
Copes well with dynamic data
sets.

Cons: Requires additional
storage and system resource
to create index.

Bitmap Indexes Provides fast access for exact and simple pattern
matches. This approach scales well from small
to large data sets. Also provides very efficient
AND/OR and count operations.

Pros: typically small in
comparison to B-tree indexes.

Cons: Requires additional
storage and system resource
to create index. Not designed
to handle many small updates

Full Tables Scans In some instances where the amount of data
being queried is small (i.e. can be cached in
memory) , this approach may provide a simple
efficient means of performing both simple and
complex searches.

Pros: Simple, No additional
resource required.

Cons : Performance will
quickly degrade as volumes
increase

efficiently.

Complex Pattern Matches (left or doubly truncated wildcards)

Examples of complex searches (using Oracle syntax)

where product like '%widescreen%' Find all rows that have “widescreen” some where
within the text of the product column

where regexp_like(description, '[[:digit:]]+ inch') Find all rows that have digits (i.e 1234567890)
followed by the word “inch” within the text of
the description column

where email like '%dom99%@dominicgiles.com' Find all rows that have “dom99” followed by
“dominicgiles.com” somewhere within the text of
the email column

Standard indexing approaches don't support complex pattern matching . Attempts to perform complex
pattern searches on tables with only b-tree or bitmap indexes on the target column will result in full
table scans. Oracle does however provide a number of solutions that can assist in performing complex
pattern matches.

Oracle Text Powerful text indexing engine supporting both
complex token and pattern matching operations.
(pattern matching optimisations result in bigger
text indexes and longer times to create them)

Pros: Powerful search
capabilities, works well on
text with strong delimiters and
stop words

Cons : Large index sizes
when compared to the small
columns being searched. Long
indexing times.

Functional Indexes Functional bit map indexes enable the sub
strings within a column to be indexed. It is then
possible to build a query that makes use of the
indexes (This approach is discussed later)

Pros: Comparatively small
index sizes. Fast pattern
match count (if bitmap index
used). Works well on text
with no delimiters or stop
words

Cons: Comparatively complex
configuration. Only valid for
small string lengths.

Whilst neither of these approaches supports the level of sophisticated pattern matching that can be
achieved using regular expressions both approaches can be used as primary filters for queries that
then perform exact regular expression matching using Oracle functions such as “regexp_like”.

Oracle Text

Oracle Text is a technology which supports text query and document classification applications.
Oracle Text provides indexing, word and theme searching, and viewing capabilities for text.

A text query application enables users to search document collections such as Web sites, digital
libraries, or document warehouses. Searching is enabled by first indexing the document collection.
The collection is typically static with no significant change in content after the initial indexing run.
Documents can be of any size and of different formats such as HTML, PDF, or Microsoft Word.
These documents are stored in a document table.

Queries usually consist of words or phrases. Application users can specify logical combinations of
words and phrases using operators such as OR and AND. Other query operations such as stemming,
proximity searching, and wildcarding can be used to improve the search results.

Oracle text typically consists of a ”Context” index on a document table. Users then perform queries
using this index via the “Contains” operator in the where clause of a select statement.

To improve the performance of wild card queries it is recommended that users specify the preference
for prefix and substring indexing.

Whilst Oracle Text excels on most forms of text indexing it typically depends on strong delimiters. If
the text has none and pure pattern matching is being performed then the size of the indexes and time
taken to find matches can be punitive .

Functional Indexes

It is possible if the column being searched is relatively small, typically less than 255 characters, to
create functional indexes that index all of the possible sub strings. By creating a query that breaks the
pattern being searched for into substrings the optimiser will use the functional indexes to provide a
efficient access path to the rows that meet the patterns criteria. The use of bitmap indexes accelerates
both the AND and OR operation used in these queries and provides an optimisation for counts.

The advantage of this approach over text is that it doesn't depend on strong delimiters and as a result
the size of the indexes and query performance is fairly consistent regardless of the text being indexed.

Example :

The output is truncated for brevity

SQL > desc directory

Name Null? Type

ID NUMBER(8)

FIRSTNAME VARCHAR2(255)

SURNAME VARCHAR2(255)

EMAIL VARCHAR2(255)

SQL> create bitmap index dir_substr_1 on dir(substr(email,1,2));

create bitmap index dir_substr_2 on dir(substr(email,2,2))

create bitmap index dir_substr_3 on dir(substr(email,3,2))

create bitmap index dir_substr_4 on dir(substr(email,4,2))

...

create bitmap index dir_substr_49 on dir(substr(email,49,2))

SQL>

Index created

Index created

Index created

Index created

...

Index created

SQL> select email /* search for dominic occurring anywhere in the email column
*/

from dir

where (substr(email, 1,2) = 'do' and

substr(email, 3,2) = 'mi' and

substr(email, 5,2) = 'ni' and

substr(email, 6,2) = 'ic')

or (substr(email, 2,2) = 'do' and

substr(email, 4,2) = 'mi' and

substr(email, 6,2) = 'ni' and

substr(email, 7,2) = 'ic')

or (substr(email, 3,2) = 'do' and

 substr(email, 5,2) = 'mi' and

substr(email, 7,2) = 'ni' and

substr(email, 8,2) = 'ic')

...

or (substr(email, 44,2) = 'do' and

substr(email, 46,2) = 'mi' and

substr(email, 48,2) = 'ni' and

 substr(email, 49,2) = 'ic');

EMAIL

The execution of the query results in a explain plan

SELECT STATEMENT

ALL_ROWS

SORT(AGGREGATE)

BITMAP CONVERSION(TO ROWIDS)

BITMAP OR

BITMAP AND

BITMAP INDEX(SINGLE VALUE) DIR.DIR_SUBSTR_1

BITMAP INDEX(SINGLE VALUE) DIR.DIR_SUBSTR_3

BITMAP INDEX(SINGLE VALUE) DIR.DIR_SUBSTR_5

BITMAP INDEX(SINGLE VALUE) DIR.DIR_SUBSTR_6

BITMAP AND

BITMAP INDEX(SINGLE VALUE) DIR.DIR_SUBSTR_2

BITMAP INDEX(SINGLE VALUE) DIR.DIR_SUBSTR_4

BITMAP INDEX(SINGLE VALUE) DIR.DIR_SUBSTR_6

BITMAP INDEX(SINGLE VALUE) DIR.DIR_SUBSTR_7

BITMAP AND

BITMAP INDEX(SINGLE VALUE) DIR.DIR_SUBSTR_3

BITMAP INDEX(SINGLE VALUE) DIR.DIR_SUBSTR_5

BITMAP INDEX(SINGLE VALUE) DIR.DIR_SUBSTR_7

BITMAP INDEX(SINGLE VALUE) DIR.DIR_SUBSTR_8

.

BITMAP AND

BITMAP INDEX(SINGLE VALUE) DIR.DIR_SUBSTR_44

BITMAP INDEX(SINGLE VALUE) DIR.DIR_SUBSTR_46

BITMAP INDEX(SINGLE VALUE) DIR.DIR_SUBSTR_48

BITMAP INDEX(SINGLE VALUE) DIR.DIR_SUBSTR_49

Clearly there is a issue with a issue with the complexity and size of the select statement required to
query the table. The complexity of creating the required SQL can be overcome by using a in-line
table function such as

create or replace function getMatches (myTable varchar2, myColumn varchar2,
token varchar2, indexwidth number default 2) return matchtypeset

parallel_enable

pipelined

is

 pragma autonomous_transaction;

 type cursortype is ref cursor;

 matchvalue varchar2(2000);

 refcursor cursortype;

 outrec matchtype := matchtype(null);

 sqltext varchar2(32000) := 'select /*+ index_combine(t) */ '||
myColumn||' from '||myTable||' t where (';

 k pls_integer;

begin

 for j in 0..50-length(token)

 loop

 if j > 0 then

 sqltext := sqltext || ') or (';

 end if;

 for i in 1..ceil(length(token)/indexwidth)

 loop

 if i > 1 then

 sqltext := sqltext || ' and ';

 end if;

 if indexwidth * i > length(token) then

 k := length(token) - indexwidth + 1;

 else

 k := indexwidth*(i -1) + 1;

 end if;

 sqltext := sqltext || ' substr(t.'||myColumn||', '|| (k+j) || ','||
indexwidth||') = ''' || substr(token,k,indexwidth)||'''';

 end loop;

 end loop;

 sqltext := sqltext || ')';

 open refcursor for sqltext;

 loop

 fetch refcursor into matchvalue;

 exit when refcursor%notfound;

 outrec.matchvalue := matchvalue;

 pipe row(outrec);

 end loop;

 return;

end;

This simplifies the SQL required to perform simple pattern matches to

DIR@DOM10 > select matchvalue from table(getmatches('dir', 'email', 'steve'))

MATCHVALUE

steve.lepez@qqz.tv

cathryn.stevens@lzx.name

eli.steven@exj.tv

steve.garratt@mhq.co

steven.hulse@wks.name

steven.mondor@wta.tv

steve.kornreich@tsb.co

steven.claypole@ife.com

steve.saint@pgg.co

9 rows selected.

The query can then make use of functions such as “regexp_like” to implement more sophisticated
pattern matching operations. For example

DIR@DOM10 > ;

 1 select matchvalue

 2 from table(getmatches('dir', 'email', 'steve'))

 3 where regexp_like(matchvalue, 'steve[[:digit:]]+')

 4*

DIR@DOM10 > /

MATCHVALUE

steve3xc@irs.com

steve5I3@ufm.co

steve3ph@mmkp.org

steve2bf@gza.co

steve4nC@sff.tv

steve6E2@uwlq.gov

steve1K0@lldze.name

steve1EX@wmlo.gov

steve7nw@ffx.name

A similar function can be used to take advantage of Oracle's bitmap index optimisations for count
operations.

 1* select getmatchcount('dir', 'email', 'steve') as matchcount from dual

DIR@DOM10 > /

MATCHCOUNT

 3056

Functional Index sizes

The total size required to index text using bitmap indexes is a function of the maximum length of data
being indexed, its average length and the number of unique sub-strings . For example to index a
column with a maximum length of 50 characters it is necessary to create 49 bitmap indexes. However
the size of each of these bitmap indexes will vary in size depended on the average length of data and
how many unique combinations of sub-strings exist along the length of the string. The following
graph illustrates this.

The graph shows that the typical length of the text being indexed is 20 characters, its minimum is 12
and it maximum is 30. The bitmap indexes increase in size as the number of unique combinations of 2
letter sub-strings increase (English words typically start with a limited number of letters) and decrease
in size when the combination of sub-strings diminishes. The advantage of bitmap indexes and their
use in functional indexes are that when no sub-string combinations occur the index compresses very
efficiently.

As with all all bitmap indexes the lower the cardinality the smaller the bit map indexes tend to be.
This means that for data with repetitive sequences this approach results in smaller indexes which

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

600000

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Size of bitmap indexes against text length

Number at column length

Size of bitmap index (MB)Column/Length

N
um

be
r

o
f t

o
ke

ns

means that more of the index tends to be cached.

Test results for text lookup using Oracle Functional Bitmap Indexes

The following sections describe the performance profile of Oracle Text compared to Oracle functional
bitmap Indexes in three different scenarios.

● Directory : Indexing 5 million email strings

● Bioinformatics : Indexing 5 million repetitive strings (using AGCT).

● Catalogue : Indexing 5 million short product descriptions.

It is worth pointing out that Oracle Text is not necessarily suited to the first two scenario's but it does
provide a useful comparison.

The tests were carried out on the following hardware

Component Description

Hardware HP DL380, Xeon 3.4GHz, 4GB Memory, MSA
500 Storage Array (10 x 72GB disks).

Operating System Redhat Enterprise Linux 4.0

Database Oracle Enterprise 10.1.0.4

Index Sizes and Creation Times

The following tables describes the sizes of both the functional indexes and the text indexes including
their time to create

Scenario Functional Bitmap

Size (Total) Creation Time

Directory 280MB 00:04:03.00

Bio-Informatics 337MB 00:05:22.00

Catalogue 317MB 00:03:51.00

Effect of changing substring length

The size of the substring used in the functional bitmap index is determined by the smallest string that
needs to be searched. For example if you need to be able to efficiently count the number of times “ae”
occurs in your data then the substring should be of length 2. Ideally the substring size should be one
less that the minimum search screen that needs to be found, this results in a more efficient query plan.
The down side of large substrings is that it increases the size of the resulting bitmap index. A
substring index of 3 or 4 seems to be a reasonable comprise for flexibility and performance.

The following table describes the size of indexes as the size of the substring is increased in the
functional bitmap index.

Scenario Total Bitmap Index Size By Substring Length

2 3 4 5

Directory 280MB 365MB 519MB 837MB

Bio-Informatics 337MB 465MB 602MB 770MB

Scenario Total Bitmap Index Size By Substring Length

2 3 4 5

Catalogue 317MB 385MB 413MB 468MB

Query Performance

The following shows how the response time varies for different functional bitmap indexes as the
search string decreases in size for the Bioinformatics schema.

NOTE : these tests are performed on a fully memory resident database.

Time taken to perform full table doubly truncated wild card search = 9.6 secs.

Search String Response Time

2 3 4 5
CATGCATCGATCGATCGTAGTTGGTAGGA
CCGTCCCCTTATCTTAAA 00:00:00.69 00:00:00.13 00:00:00.03 00:00:00.03
CATGCATCGATCGATCGTAGTTGGTAGGA
CCGTCCCCTT 00:00:01.27 00:00:00.24 00:00:00.06 00:00:00.06
CATGCATCGATCGATCGTAGTTGGTAGGA
CC 00:00:03.72 00:00:00.39 00:00:00.10 00:00:00.08
CATGCATCGATCGATCGTAGTTGG 00:00:03.63 00:00:00.53 00:00:00.12 00:00:00.09
CATGCATCGATCGATCG 00:00:02.97 00:00:00.61 00:00:00.14 00:00:00.11
CATGCATCGAT 00:00:02.83 00:00:00.56 00:00:00.14 00:00:00.11
CATGCA 00:00:02.86 00:00:01.42 00:00:00.17 00:00:00.17
CAT 00:00:01.22 00:00:02.30 N/A N/A

The following shows how the response time varies for different functional bitmap indexes as the
search string decreases in size for the Directory schema

Time taken to perform full table doubly truncated wild card search = 4.3 secs.

Search String Response Time

2 3 4 5

dominic106@drfyx.tv 00:00:00.07 00:00:00.05 00:00:00.01 00:00:00.01

dominic106@drfyx. 00:00:00.04 00:00:00.04 00:00:00.01 00:00:00.01

dominic106@drfy 00:00:00.04 00:00:00.03 00:00:00.01 00:00:00.01

dominic106@d 00:00:00.03 00:00:00.03 00:00:00.01 00:00:00.01

dominic10 00:00:00.02 00:00:00.04 00:00:00.01 00:00:00.01

domini 00:00:00.04 00:00:00.07 00:00:00.21 00:00:00.04

domi 00:00:00.04 00:00:00.17 00:00:00.31 N/A

dom 00:00:00.31 00:00:00.22 N/A N/A

The following shows how the response time varies for different functional bitmap indexes as the
search string decreases in size for the Catalogue schema

Time taken to perform full table doubly truncated wild card search = 6.5 secs.

Search String Response Time

2 3 4 5

self-cleaning performance
medium 00:00:00.15 00:00:00.02 00:00:00.01 00:00:00.02

self-cleaning performance med 00:00:00.19 00:00:00.02 00:00:00.01 00:00:00.02

self-cleaning performance 00:00:00.35 00:00:00.09 00:00:00.02 00:00:00.01

self-cleaning perform 00:00:00.24 00:00:00.02 00:00:00.01 00:00:00.01

self-cleaning pe 00:00:00.25 00:00:00.02 00:00:00.01 00:00:00.02

self-cleani 00:00:00.10 00:00:00.06 00:00:00.02 00:00:00.02

self-cl 00:00:00.05 00:00:00.01 00:00:00.01 00:00:00.02

sel 00:00:00.08 00:00:00.04 N/A N/A

Further Work

Using the routines described here it is only possible to index data of a limited size. However it would
be relatively simple to develop a loader to chunk longer text into rows and index this. The author will
update this paper with the required code at a later date.

Conclusions

The use of functional bitmap indexes offers a flexible and efficient means of indexing data for simple
pattern matching on data with little or no delimiters.

	Oracle bitmap Indexes and their use in pattern matching.
	Author : Dominic Giles
	Date : 8 July 2005
	Introduction
	Simple Pattern Matches (right truncated wildcards)
	Complex Pattern Matches (left or doubly truncated wildcards)
	Oracle Text
	Functional Indexes
	Example :

	Functional Index sizes

	Test results for text lookup using Oracle Functional Bitmap Indexes
	Index Sizes and Creation Times
	Effect of changing substring length
	Query Performance

	Further Work
	Conclusions

